A free energy bound for the Hopfield model

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1993 J. Phys. A: Math. Gen. 26 L353
(http://iopscience.iop.org/0305-4470/26/6/010)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:58

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A free energy bound for the Hopfield model

Hans Koch \dagger
Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA

Received 4 August 1992

Abstract

We give a simple upper and lower bound on the free energy density of the Hopfield model of size N with p stored patterns, in the limit where N and p tend to infinity with $p / N \rightarrow \alpha<1$. The two bounds coincide for $\alpha=0$.

The Hamiltonian of the Hopfield model with p stored N-bit patterns is a random function on the set $\mathscr{S}=\{+1,-1\}^{N}$, with values given by the equation

$$
\begin{equation*}
H_{p, N, \xi}(S)=-\frac{1}{2 N} \sum_{i, j=1}^{N} \sum_{\mu=1}^{p} \xi_{i}^{\mu} \xi_{j}^{\mu} S_{i} S_{j} \quad S \in \mathscr{S} \tag{1}
\end{equation*}
$$

where ξ is a $p \times N$ matrix whose elements ξ_{i}^{μ} are independent random variables with values ± 1 and mean zero. The quantity considered here is the expected value of the free energy density

$$
\begin{equation*}
f_{p, N, \beta}(\xi)=-\frac{1}{\beta N} \ln \left[\sum_{S \in \mathscr{S}} \mathrm{e}^{-\beta H_{p, N, k}(S)}\right] \tag{2}
\end{equation*}
$$

at positive inverse temperatures $\boldsymbol{\beta}$. In order to state our result, we define

$$
\begin{equation*}
\phi_{\delta}(\beta, h)=-\frac{1}{\beta} \ln [2 \cosh (\beta h)]+\frac{1-\delta}{2} h^{2} . \tag{3}
\end{equation*}
$$

Theorem. Let $0 \leqslant \alpha<1$ and $\delta<1$ such that $\delta-4 \sqrt{\alpha}(1-\delta)$ is positive. Then for any $\beta>0$

$$
\begin{equation*}
\min _{h \in \mathbb{R}} \phi_{\delta}(\beta, h)+\frac{\alpha}{2 \beta} \ln [\delta-4 \sqrt{\alpha}(1-\delta)] \leqslant \lim _{\substack{N, p \rightarrow \infty \\ p / N \rightarrow \alpha}} \mathbb{E} f_{p, N, \beta}(\xi) \leqslant \min _{h \in \mathbb{R}} \phi_{0}(\beta, h) \tag{4}
\end{equation*}
$$

where 'lim' stands for either 'lim sup' or 'lim inf'.

Remarks. The upper bound in (4) is well known: it is the free energy density of the Curie-Weiss model, which is obtained by dropping all terms with $\mu>1$ from the Hamiltonian (1). For $\alpha=0$ the lower bound in (4) coincides with the upper bound as $\delta \downarrow 0$. In this case we recover a recent result of Shcherbina and Tirozzi [2]. For $\beta<1$, the lower bound with $\delta=1-\beta$ agrees with the correct free energy density up to $\mathcal{O}\left(\alpha^{3 / 2}\right)$; see e.g. the references [1] and [3].

[^0]Proof. Consider the overlap matrix A,

$$
\begin{equation*}
A_{\mu \nu}=\frac{1}{N} \sum_{i=1}^{N} \xi_{i}^{\mu} \xi_{i}^{\nu}-\delta_{\mu \nu} \quad \mu, \nu=1, \ldots, p \tag{5}
\end{equation*}
$$

An estimate in [2] implies that there exists a real number λ and an even positive integer n, both depending on N, such that

$$
\begin{equation*}
\lambda^{-n} \mathbb{E} \operatorname{tr} A^{n} \leqslant a\left(N^{-1}\right) \quad \lambda=4 \sqrt{\alpha}+\alpha(1) \tag{6}
\end{equation*}
$$

as $N \rightarrow \infty$. A stronger version of this estimate (inequality (11)), which could be of independent interest, will be proved below.

Assume now that α and δ satisfy the hypothesis of the theorem, and that N is sufficiently large such that $\delta-\lambda(1-\delta)>0$. Denote by $\langle\cdot, \cdot\rangle$ the standard inner product on \mathbb{R}^{p}, and denote by ξ_{i} the i th column of the matrix ξ. If ξ is such that the operator norm of \boldsymbol{A} is less than or equal to λ, we get the following upper bound on the partition function:

$$
\begin{align*}
& \sum_{S \in \mathscr{S}} \exp \left[-\beta H_{p, N, \xi}(S)\right] \\
&=\left(\frac{N \beta}{2 \pi}\right)^{p / 2} \int \mathrm{~d}^{p} m \exp \left[-\frac{1}{2} N \beta\langle m, m\rangle\right] \sum_{S \in \mathscr{S}} \exp \left[\beta \sum_{i=1}^{N}\left\langle m, \xi_{i}\right\rangle S_{i}\right] \\
&=\left(\frac{N \beta}{2 \pi}\right)^{p / 2} \int \mathrm{~d}^{p} m \exp \left[-\frac{1}{2} N \beta\langle m, m\rangle\right] \prod_{i=1}^{N} 2 \cosh \left(\beta\left\langle m, \xi_{i}\right\rangle\right) \\
&=\left(\frac{N \beta}{2 \pi}\right)^{p / 2} \int \mathrm{~d}^{p} m \exp \left[-\frac{1}{2} N \beta\langle m,[\delta+(1-\delta) A] m\rangle-\beta\right] \sum_{i=1}^{N} \phi_{\delta}\left(\beta,\left\langle m, \xi_{i}\right\rangle\right) \\
& \leqslant\left(\frac{N \beta}{2 \pi}\right)^{p / 2} \int \mathrm{~d}^{p} m \exp \left[-\frac{1}{2} N \beta\langle m,[\delta-\lambda(1-\delta)] m\rangle\right] \max _{h \in \mathbf{R}} \exp \left[-\beta N \phi_{\delta}(\beta, h)\right] \\
&=[\delta-\lambda(1-\delta)]^{-p / 2} \exp \left[-\beta N \min _{h \in \mathbf{R}} \phi_{\delta}(\beta, h)\right] \tag{7}
\end{align*}
$$

Now we take the logarithm and divide by $-\beta N$. The resulting lower bound on the free energy density (2) can be extended to all patterns ξ, by adding to it the trivial bound $-[p / 2+$ const $]$, multiplied by the positive factor $\lambda^{-n} \operatorname{tr} A^{n}$ which is larger than 1 whenever $\|A\|>\lambda$:
$f_{p, N}(\beta, \xi) \geqslant \min _{h \in \mathbf{R}} \phi_{\delta}(\beta, h)+\frac{p}{2 \beta N} \ln [\delta-\lambda(1-\delta)]-[p / 2+$ const $] \lambda^{-n} \operatorname{tr} A^{n}$.
The assertion now follows from (8) and (6).
To complete the proof of our theorem we will now derive a bound that implies (6). Let $n \geqslant 4$. Then $N^{n} \mathbb{E} \operatorname{tr} A^{n}$ is equal to the number of ordered products

$$
\begin{equation*}
\Pi_{0} \equiv \xi_{i_{1}}^{\mu_{1}} \xi_{i_{2}}^{\mu_{2}} \xi_{i_{2}}^{\mu_{2}} \xi_{i_{2}}^{\mu_{3}} \ldots \xi_{i_{k-1}}^{\mu_{k}}\left\{\xi_{i_{k}}^{\mu_{k}} \ldots \xi_{i_{l}}^{\mu_{i}}\right\} \xi_{i_{l}}^{\mu_{l+1}} \ldots \xi_{i_{n}}^{\mu_{1}} \xi_{i_{n}}^{\mu_{1}} \tag{9}
\end{equation*}
$$

(ignoring the braces) with $1 \leqslant \mu_{k} \leqslant p$ and $i \leqslant i_{k} \leqslant N$ for all k, subject to the constraint that $\mu_{1} \neq \mu_{2} \neq \ldots \neq \mu_{n} \neq \mu_{1}$, and that each random variable ξ_{i}^{μ} appears an even number of times. Such products will be referred to as contributing products. Note that the constraint implies that the cardinalities $u=\left|\left\{\mu_{1}, \ldots, \mu_{n}\right\}\right|$ and $v=\left|\left\{i_{1}, \ldots, i_{n}\right\}\right|$ satisfy $u+v \leqslant n+1$ and $2 v \leqslant n$.

A contributing product will be called simple if its $2 n$ factors can be grouped into n pairs of identical random variables in such a way that if each pair is marked by braces as shown in equation (9) for the pair ($\xi_{i_{k}}^{\mu_{k}}, \xi_{i_{l}}^{\mu_{t}}$), then the 'sets' corresponding to different pairs are either nested or disjoint. Note that such pairings can be specified by giving only the n left braces. Thus, since each pairing determines whether or not any two indices can have different values, the number of simple products can be bounded by

$$
\begin{equation*}
c_{n}(p) \equiv\binom{2 n}{n} \max _{\substack{u+v \approx n+1 \\ v \approx n / 2}} p^{u} N^{v} \tag{10}
\end{equation*}
$$

Assume now that Π_{0} is a non-simple contributing product. Below we will give a procedure for cutting Π_{0} between some top-linked pairs (adjacent factors that have a common upper index, or the first and last factor) and regrouping the pieces into a simple product Π_{m} that has the following property P : the first factor of Π_{m} is the same as that of Π_{0}; and if ω is any closed walk on the factors of Π_{m} such that every odd-numbered (even-numbered) step is between two factors that are top-linked in Π_{m} $\left(\Pi_{0}\right)$, then, with one possible exception, all pairs connected by an odd-numbered step of ω are pairs of identical factors. In particular, if we only consider walks whose first step goes to the right, and for which all but the last (or all) odd-numbered steps are between identical pairs, then we can find a set W of walks of this type, such that every factor of Π_{m} is visited by exactly one walk in W, and only once. Thus, it is possible to encode the original product Π_{0} in a modified version Π_{m}^{\prime} of Π_{m}, where, along each walk ($\omega_{0}, \omega_{1}, \ldots, \omega_{l}=\omega_{0}$) $\in W$ of length $l \geqslant 4$, the upper index in the identical factors $\omega_{2 k-2}$ and $\omega_{2 k-1}$ has been replaced by a pointer to the factor $\omega_{2 k}$, for $1 \leqslant k<l / 2$. Since the upper indices of Π_{m}^{\prime} can take at most $p+2 n$ different 'values', it follows that the number of contributing products is bounded by $c_{n}(p+2 n)$, and hence
$\mathbb{E} \operatorname{tr} A^{n} \leqslant N^{-n} c_{n}(p+2 n) \leqslant 4^{n}(p+2 n)\left(\frac{p+2 n}{N}\right)^{n / 2} \quad p+2 n \leqslant N$.
We get (6) by taking, e.g. $\lambda=4\left(1+n^{-1 / 2}\right)\left((p+2 n / N)^{1 / 2}\right.$ with $n=$ twice the integer part of \sqrt{N}.

Finally, to construct Π_{m} from Π_{0} we iterate the following step. Assume that Π_{m-1} is non-simple. Then, in this product, it is possible to find an odd number $\geqslant 3$ of consecutive factors $\xi_{i}^{\mu} \xi_{i}^{\mu} \ldots \xi_{j}^{\mu}$ such that ξ_{j}^{μ} is top-linked to a factor ξ_{j}^{μ} that is identical to ξ_{i}^{μ}, with $i \neq i^{\prime}$ and $j \neq j^{\prime}$. After choosing such a sub-product, we now reverse the order of the factors $\xi_{i}^{\mu} \ldots \xi_{j}^{\mu}$ in Π_{m-1} and define Π_{m} to be the result of this operation. Note that this creates a new top-linked pair $\left(\xi_{i}^{\mu}, \xi_{j}^{\mu}\right)$ of identical factors. Thus, the iteration ends (with a simple product) after less than n steps. It is easy to check that each step preserves the abovementioned property P, and that contributing products are mapped to contributing products.

References

[1] Amit D J, Gutfreund H and Sompolinsky H 1985 Spin-glass models of neural networks Phys. Rev. A 321007
[2] Shcherbina M and Tirozzi B 1991 Exact mean field theory for some Hopfield model Preprint
[3] Scacciatelli X and Tirozzi B 1991 Fluctuation of the free energy in the Hopfield model Preprint

[^0]: \dagger Supported in part by the National Science Foundation under Grant No. DMS-9103590.

