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Received 4 August 1992 

Abshad. We give B simple upper and lower bound on the free energy density of the 
Hopfield model of size N with p stored panems, in the limit where N and p tend to 
infinity with p / N  + a e 1. The two bounds coincide for 01 = 0. 

The Hamiltonian of the Hopfield model with p stored N-bit patterns is a random 
function on the set 9= [+l, -l}N, with values given by the equation 

where ,$ is a p x N matrix whose elements ( f  are independent random variables with 
values * 1 and mean zero. The quantity considered here is the expected value of the 
free energy density 

at positive inverse temperatures P. In order to state our result, we define 

(3) 
1 1 - 6  

~s(P,h)=--In[2cosh(ph)]+-h2.  P 2 

Theorem. Let 0s a < 1 and S < 1 such that S -4&( 1 - 6) is positive. Then for any p > 0 

min qbs(p, h )  +- In16 -&( 1 - a)] < Iim E&,.p(6) s min &(p, h )  

where ‘Iim’ stands for either ‘lim sup’ or ‘lim inf‘. 

Remarks. The upper bound in (4) is well known: it is the free energy density of the 
Curie-Weiss model, which is obtained by dropping all terms with p> 1 from the 
Hamiltonian (1). For a = 0 the lower bound in (4) coincides with the upper bound as 
Sl.0. In this case we recover a recent result of Shcherbina and Tirozzi [2 ] .  For p < 1, 
the lower bound with S = 1 - P  agrees with the correct free energy density up to 6(a3’*); 
see e.g. the references [l] and [3]. 

(4) 
a 

hER 28 N . P * ~  he@ 
~ 1 N - o  
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Boo$ Consider the overlap matrix A, 

p , v = l ,  ..., p. ( 5 )  
1 N  

N i - 1  
A,,.=- C KCr-8 , ,p  

An estimate in [2] implies that there exists a real number A and an even positive integer 
n, both depending on N, such that 

A-"EtrA"<a(N-') A =4&+0(1) (6) 

as N + W .  A stronger version of this estimate (inequality ( l l ) ) ,  which could he of 
independent interest, will be proved below. 

Assume now that a and S satisfy the hypothesis of the theorem, and that N is 
sufficiently large such that 6 - A (  1 - 8) > 0. Denote by (. , .) the standard inner product 
on W', and denote by 6; the ith column of the matrix c. If .$ is such that the operator 
n o m  of A is less than or equal to A, we get the following upper bound on the partition 
function: 

= [ S  - A ( l -  8)]-p" exp -PN min + s ( P ,  h )  [ h e R  1 (7) 

Now we take the logarithm and divide by -PN. The resulting lower bound on the free 
energy density (2) can be extended to all patterns 5, by adding to it the trivial bound 
-[p/2+const], multiplied by the positive factor A-" tr A" which is larger than 1 
whenever llAll> A: 

&.N( P, e)>  Et &(P, h)+-ln[6 - A ( l -  6)]-[p/2+const]A-" tr A". 

The assertion now follows from (8) and (6). 

(6). Let n>4. Then N"E tr A" is equal to the number of ordered products 

(8) P 
2BN 

To complete the proof of our theorem we will now derive a bound that implies 

( 9 )  

(ignoring the braces) with 1 Spk S p  and 1 < ik < N for all k, subject to the constraint 
that p,  # p2 # . . . # pn # p, , and that each random variable g": appears an even number 
of times. Such products will be referred to as contributing products. Note that the 
constraint implies that the cardinalities U = I(plr.. . , p.}I and U = l{il,. . . , i.}l satisfy 
u+v=zn+l  a n d 2 v s n .  

no= c : q ~ g y ~ .  . . e ~ , c s p . .  . t p ) t p . .  . t",.~ 
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A contributing product will be called simple if its 2n factors can be grouped into 
n pairs of identical random variables in such a way that if each pair is marked by 
braces as shown in equation (9) for the pair ( f?,  t?), then the 'sets' corresponding 
to different pairs are either nested or disjoint. Note that such pairings can be specified 
by giving only the n left braces. Thus, since each pairing determines whether or not 
any two indices can have different values, the number of simple products can be 
bounded by 

Assume now that ll, is a non-simple contributing product. Below we will give a 
procedure for cutting ll, between some top-linked pairs (adjacent factors that have a 
common upper index, or the first and last factor) and regrouping the pieces into a 
simple product II, that has the following property P: the first factor of ll, is the same 
as that of no; and if w is any closed walk on the factors of II, such that every 
odd-numbered (even-numbered) step is between two factors that are top-linked in ll, 
(no), then, with one possible exception, all pairs connected by an odd-numbered step 
of w are pairs of identical factors. In particular, if we only consider walks whose first 
step goes to the right, and for which all but the last (or all) odd-numbered steps are 
between identical pairs, then we can find a set W of walks of this type, such that every 
factor of ll, is visited by exactly one walk in W, and only once. Thus, it is possible 
to encode the original product II, in a modified version II; of ll,, where, along each 
walk (wo, w l , .  . . , wL = oo) E W of length I >  4, the upper index in the identical factors 
w2x-2 and wZk-] has been replaced by a pointer to the factor wZkr for 1 < k < 1/2. Since 
the upper indices of I I L  can take at most p + 2 n  different 'values', it follows that the 
number of contributing products is bounded by ~ ( p + 2 n ) ,  and hence 

E tr A" N-"cn(p+2n) S4"(p+2n) - (" "IZ 
p + 2n s N. 

We get (6) by taking, e.g. h =4(1+ n-"2)((p +Zn/N)'/'with n = twice the integer part 

Finally, to construct ll, from no we iterate the following step. Assume that llmwI 
is non-simple. Then, in this product, it is possible to find an odd number a 3  of 
consecutive factors t y f f .  . . c$ such that (j' is top-linked to a factor 5,' that is identical 
to t f ,  with i # i' and j # j'. After choosing such a sub-product, we now reverse the 
order of the factors f f  . . . f$  in and define II, to be the result of this operation. 
Note that this creates a new top-linked pair ( [ f ,  cy) of identical factors. Thus, the 
iteration ends (with a simple product) after less than n steps. It is easy to check that 
each step preserves the abovementioned property P, and that contributing products 
are mapped to contributing products. 

of m. 
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